If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-242=0
a = 1; b = 0; c = -242;
Δ = b2-4ac
Δ = 02-4·1·(-242)
Δ = 968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{968}=\sqrt{484*2}=\sqrt{484}*\sqrt{2}=22\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{2}}{2*1}=\frac{0-22\sqrt{2}}{2} =-\frac{22\sqrt{2}}{2} =-11\sqrt{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{2}}{2*1}=\frac{0+22\sqrt{2}}{2} =\frac{22\sqrt{2}}{2} =11\sqrt{2} $
| 22=16+3×b | | 2/3x^2+1/6x+3=0 | | 4.9t^2+100t-392=0 | | 96-c=20-12c | | 8x-5=2-19 | | 3x/13+5/13=2x/13=-4/13 | | 3x+5=2x=-4 | | (-2)x+4^3=68 | | 8x+(-15)=17 | | (-34)-7x=(-69) | | 5(x+2)=3(2x-7) | | x/3+(-4)(3)=(-9) | | 9=5x+25/5 | | 3(n+2)+2-4n=-2 | | x-3/4+2x-5/3=11 | | 29+(x)/(-7)=27 | | 3/5x+5/3x=5/3+3/5x | | (-2)x/5-(-8)=4 | | 12x-4=(-40) | | (-5)x-3=17 | | 1/4x-8=-14 | | 21692-6301p=11105p-4935 | | 4x/3-10=(-2) | | n2+5/4-2=n | | 3(n+2)-4=-2 | | x/7+13=9 | | 7x+2=2.5x | | 1/2n+-15=-7 | | n*28=112 | | 85521-1809p=9877+2790p | | 7b=+18b | | (6z-4)=117 |